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Abstract. The aim of this paper is to explain the non monotonic temperature dependence of the self-
consistent superconducting gap of ferromagnet/superconductor/ferromagnet (F/S/F) trilayers with weak
ferromagnets in the parallel alignment (equivalent to F/S bilayers). We show that this is due to Andreev
bound states that compete with the formation of a minigap. Using a recursive algorithm we discuss in
detail the roles of various parameters (thicknesses of the superconductor and ferromagnets, relative spin
orientation of the ferromagnets, exchange field, temperature, disorder, interface transparencies).

PACS. 74.78.Na Mesoscopic and nanoscale systems – 74.45.+c Proximity effects; Andreev effect; SN and
SNS junctions – 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects

1 Introduction

In conventional superconductivity the attractive interac-
tion mediated by phonons binds electrons into Cooper
pairs that condense in the BCS ground state with a
zero temperature gap ∆ to the first quasiparticle excita-
tions [1]. In ferromagnetism electron interactions generate
a spin symmetry breaking that can be described by the
Stoner model in which electrons subject to an exchange
field hex acquire a Zeeman energy.

Many physical phenomena are involved at the in-
terfaces between superconductors (Ss) and ferromag-
nets (Fs). For instance it was shown in the early 1970’s
that the Fermi surface spin polarization of a ferromag-
netic metal could be measured by spin-resolved tunneling
between a ferromagnet and a superconducting film in the
presence of Zeeman splitting [2]. The Fermi surface spin
polarization was measured more recently [3,4] by Andreev
reflection at F/S interfaces [5] with highly transparent in-
terfaces, not in thin film geometries. The non equilibrium
spin population in the ferromagnet plays also a role in
Andreev reflection at F/S interfaces [6–8]. Andreev reflec-
tion with Zeeman splitting in a thin film geometry could
be another way to probe the Fermi surface spin polariza-
tion [9].

These experiments can be interpreted without dis-
cussing the proximity effect (the pair correlations induced
in the normal metal or ferromagnet) that has focused an
important interest recently. It is well established both the-
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oretically and experimentally that the pair amplitude in-
duced in a ferromagnetic metal oscillates in space and can
become negative [10–14], giving rise to the π-coupling. The
π-coupling generates oscillations of the critical tempera-
ture of F/S multilayers as a function of the thickness of the
ferromagnetic layers [15–19]. The bad quality of interfaces
may however also play a role in these experiments [20,21].
Direct evidences of the π-coupling have been obtained re-
cently [22–25]. The proximity effect at F/S interfaces is
related to the formation of the so-called Andreev bound
states. Andreev bound states were first discussed by de
Gennes and Saint-James [26] and Andreev [27] for normal
metal (N)/S interfaces. Several theoretical investigations
of Andreev bound states at F/S interfaces have been pre-
sented recently [21,28,29] as well as numerical investiga-
tions of the proximity effect at F/S interfaces, based on
simulations of the Bogoliubov-de Gennes equations [30].

The interest in the inverse proximity effect (the prop-
erties of the superconductor) at F/S interfaces dates back
to the 1960’s [31–33] where it was shown that with in-
sulating ferromagnets an exchange field is induced in the
superconducting electrode of a F/S/F trilayer in the paral-
lel alignment. The theoretical prediction by de Gennes [31]
was further confirmed by experiments in the late 1960’s
with metallic [32] and insulating [33] ferromagnets. Recent
experiments were carried out with metallic ferromagnets,
which confirmed the effect on the critical temperature [34].
It was shown recently [36,35] that an exchange field in
the superconductor exists also with metallic ferromagnets
but the sign of the magnetization in the superconductor
is opposite to the magnetization in the ferromagnet. An
exchange field in a superconductor is pair breaking. As a
consequence the superconducting transition temperature
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in the parallel alignment is smaller than in the antiparallel
alignment.

With metallic ferromagnets the proximity effect may
influence the value of the superconducting gap and transi-
tion temperature. It was realized recently [36–40] that the
proximity effect in F/S/F trilayers is quite special since
under some conditions the zero temperature supercon-
ducting gap in the parallel alignment can be larger than
in the antiparallel alignment. This was established [36,37]
within a model of multiterminal hybrid structure origi-
nally proposed for transport properties [41–45] and is re-
lated to spatially separated superconducting correlations
among the two ferromagnets. The same behavior was
found within a model of F/S/F trilayer with atomic thick-
ness and half-metal ferromagnets [39], which was finally
extended to Stoner ferromagnets [40].

Other physical effects take place with weak ferromag-
nets for which the exchange field is smaller than the su-
perconducting gap, as indicated by the reentrance of the
critical temperature of F/S superlattices as a function of
the exchange field [46,47], and by the reentrance of the
critical temperature of F/S bilayers as a function of the
thickness of the ferromagnet [38,48,49]. The full temper-
ature dependence of the self-consistent superconducting
gap was calculated in reference [40] and it was shown that
for F/S bilayers or F/S/F trilayers with atomic thickness
the superconducting gap can have a non monotonic tem-
perature dependence: within a given range of parameters
the superconducting gap first increases as temperature T
is reduced, reaches a maximum, and decreases to zero as
T is further reduced. Within a narrow range of interface
transparencies there exists also a reentrant behavior of the
superconducting gap at low temperature [40].

The purpose of this article is to show that this behav-
ior is related to the formation of Andreev bound states
that can compete with the formation of a superconduct-
ing minigap. We find a systematic correlation between An-
dreev bound states at the Fermi level and a reduction of
the low temperature self-consistent superconducting gap,
which constitutes the main result of this article.

The article is organized as follows. Preliminaries are
given in Section 2 in which we discuss the models and
the Green’s functions formalism. A recursive algorithm,
more efficient than the direct inversion of the Dyson ma-
trix [40], is presented in Section 3. Different regimes can
be obtained depending on how the lateral dimensions LS

of the superconductor and LF of the ferromagnets com-
pare respectively (i) to the zero temperature lateral su-
perconducting coherence length ξ

(⊥)
S = 2t0a0/π∆ [28],

where t0 is the lateral hoping amplitude, and a0 is equal
to the interatomic distance in the transverse direction;
and (ii) to the zero temperature lateral exchange length
ξ
(⊥)
F = 2t0a0/πhex [28]. We present a detailed investiga-

tion of the different regimes LF , LS � ξ
(⊥)
S (Sect. 4);

LS � ξ
(⊥)
S and LF � ξ

(⊥)
F (Sect. 5); LS � ξ

(⊥)
S and

LF � ξ
(⊥)
F (Sect. 6). We cannot carry out a system-

atic study of the regime LS ∼ ξ
(⊥)
S , LF � ξ

(⊥)
F which

is too demanding from a computational point of view.

In Section 7 we provide a comparison with other mod-
els proposed recently to describe Andreev bound states
in F/S hybrids [28,29]. Concluding remarks are given in
Section 8.

2 Preliminaries

2.1 The models

We suppose that the two ferromagnets of the F/S/F tri-
layer have the same thickness LF . We note LS the thick-
ness of the superconductor (see Fig. 1). The three elec-
trodes are made of 2D planes stacked along the z axis (see
Fig. 2). Each superconducting plane is described by the
BCS Hamiltonian

H(2D)
BCS =

∑
k,σ

ε(k)c+k,σck,σ

+∆
∑
k

(
c+k,↑c

+
−k,↓ + ck,↓c−k,↑

)
, (1)

where the wave vector k is parallel to the 2D layer. The
free electron dispersion relation within one layer is ε(k) =
�

2k2/2m. The ferromagnets are described by the Stoner
model

H(2D)
Stoner =

∑
k,σ

ε(k)c+k,σck,σ

− hex

∑
k

(
c+k,↑ck,↑ − c+k,↓ck,↓

)
, (2)

where hex is the exchange field. The coupling between two
planes belonging to the same superconducting or ferro-
magnetic electrode is given by

WF−F = WS−S = t0
∑
xL,σ

(
c+xL,σcxR,σ + c+xR,σcxL,σ

)
, (3)

whereas the coupling between the ferromagnets and the
superconductor is given by

WF−S = t
∑
xL,σ

(
c+xL,σcxR,σ + c+xR,σcxL,σ

)
, (4)

where the summation runs over all sites at the interface
(xL corresponds to a site on the left side and xR is the cor-
responding site on the right side). The parameters are such
that the coherence length within one layer ξ(‖)S = �v

(‖)
F /∆

and the transverse coherence length ξ
(⊥)
S = 2t0a0/π∆

are larger than the width LS of the superconductor. The
model should strictly speaking apply to ballistic systems
whereas real samples are usually in the diffusive regime.
However we can include disorder in one particular case
(the F/S/F trilayer with atomic thickness, see Sect. 4.3).

In this case the qualitative behavior is robust against
increasing disorder. Fabry-Perot resonances generate par-
ity effects for small values of LS and LF in the ballistic
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Fig. 1. (a) Schematic representation of the F/S/F trilayer.
D and H are sent to to infinity (infinite planar geometry).
The ferromagnets (superconductor) are made of LF (LS) lay-
ers stacked in the lateral (z) direction. (b) Schematic represen-
tation of the 2D F/S interface model [29] considered in Sec-
tion 7.2. d′ is sent to infinity.

y

z0

Layer a’ Layer a Layer α Layer β Layer b Layer b’

L  =4 L  =3 L  =4
F S F

FerromagnetSuperconductorFerromagnet

Fig. 2. Cut in the (z, y) plane of the F/S/F trilayer with
(LS/a0, LF /a0) = (3, 4), where a0 is the interplane spacing.
The ferromagnets and the superconductor are infinite in the
x and y directions. The left ferromagnet ends at the layers a′

and a. The right ferromagnet ends at the layers b and b′. The
superconductor ends at layers α and β.

model. These parity effects are not expected to occur in
the diffusive regime, but do not occur either in our simu-
lations if LS and LF are sufficiently large. By increasing
LF and LS we obtain a cross-over between the regime
LF , LS � λF and the regime λF � LF , LS � ξ

(⊥)
S . We

find the same qualitative effects in the two regimes. More-
over we obtain in Section 5 a non monotonic variation of
the self-consistent superconducting gap as a function of
the exchange field. This is compatible with the non mono-
tonic variation of the critical temperature as a function
of the exchange field [38,48,49] obtained in the context
of linearized Usadel equations for disordered conductors.
The compatibility between the two behaviors indicates the
validity of our approach.

2.2 Green’s functions

2.2.1 Zero temperature Green’s functions

The Green’s functions of an isolated superconductor can
be gathered in a 4 × 4 matrix in the spin ⊗ Nambu rep-
resentation but in the absence of non collinear magne-
tizations [44,50–52] the quantization axis can be chosen
parallel to the exchange field so that the 4 × 4 Green’s
functions reduce to two separate 2 × 2 matrices, one in
each spin sector. For practical purpose we work in the
spin-up sector. The Green’s function is given by

ĝx,y(t, t′) = −i


〈
Tt

(
cx,↑(t), c+y,↑(t

′)
)〉

〈Tt (cx,↑(t), cy,↓(t′))〉〈
Tt

(
c+x,↓(t), c

+
y,↑(t

′)
)〉 〈

Tt

(
c+x,↓(t), cy,↓(t′)

)〉

 , (5)

where x and y are two arbitrary sites in the supercon-
ductor and Tt is the usual T -product [53]. The “11” com-
ponent describes the propagation of a spin-up electron,
the “22” component describes the propagation of a spin-
down hole and the “12” and “21” components describe
superconducting correlations. After Fourier transforming
we obtain a standard expression for the different elements
of the Green’s function [53]:

g1,1
α,α(ξ, ω) =

u2
k

ω − Ek + iη
+

v2
k

ω + Ek − iη
(6)

f1,2
α,α(ξ, ω) = − ∆

[ω − Ek + iη] [ω + Ek − iη]
. (7)

The variable ξ is related to the kinetic energy: ξk =
�

2k2/(2m) − εF where εF = �
2k2

F /2m is the Fermi en-
ergy. Ek =

√
∆2 + ξ2k is the quasiparticle energy and

u2
k = (1 + ξk/E)/2 and v2

k = (1 − ξk/E)/2 are the BCS
coherence factors.

The Green’s function of a spin-up ferromagnet is diag-
onal in Nambu space. The “11” component is given by

g1,1
a,a(ξ, ω) =

1
[ω − ξ + hex + iη sgn(ξ − hex)]

, (8)

and the Green’s functions of a spin-down ferromagnet are
obtained by changing hex into −hex.

The Green’s functions Ĝx,y of the connected trilayer
are given by the Dyson equation Ĝ = ĝ+ ĝ⊗Σ̂⊗Ĝ, where
in a compact notation Σ̂ is the self-energy corresponding
to the tunnel Hamiltonian (4) and ⊗ corresponds to a sum-
mation over spatial variables and a convolution over time
variables. We look for non perturbative solutions of the
Dyson equations suitable for describing Andreev bound
states.

2.2.2 Finite temperature Green’s functions

Finite temperature Green’s functions are obtained
through the analytic continuation ω → iω and by sum-
ming over the Matsubara frequencies ωn = (2n + 1)πT
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where T is the temperature [53]. The superconducting gap
is determined from the BCS self-consistency equation [53]

∆x = λT
∑

n

∫
d2k

(2π)2
G1,2

x,x(k, iωn), (9)

where λ is the strength of the attractive electron-electron
interaction. To evaluate (9) we change variable to ξ =
�

2k2/(2m) − εF and restrict the integral to |ξ| < ωD. To
avoid introducing new parameters we use ωD = εF =
�

2k2
F /2m. We note ∆0 the superconducting gap of an iso-

lated 2D layer. All energy scales will be compared to ∆0.

3 Recursive algorithm for the F/S/F trilayer

3.1 Green’s functions of an isolated electrode

We aim to describe F/S/F trilayers with a finite thick-
ness of all electrodes. In this respect the (LS/a0, LF/a0) =
(1, 1) trilayer is just viewed as a toy-model: we use a mean
field approach that does not incorporate the phase fluc-
tuations of the order parameter and we do not consider
possible instabilities such as spin or charge density wave.

The ferromagnetic and superconducting electrodes of
the F/S/F trilayer consist of a finite number of layers
stacked along the z axis and labeled from 1 to L (see
Fig. 2). Two consecutive layers n and n + 1 are coupled
by a tunnel amplitude tn. We use Green’s functions that
are parametrized by the wave vector in the (x, y) direction
and by the spatial coordinate in the lateral direction.

We note ĥ(L)
i,j the Green’s functions of the system of

L layers in a given electrode and ĝi,i the Green’s function
of the isolated layer number i. The Green’s function ĥ(L)

L,L

can be calculated recursively through a matrix continued
fraction:

ĥ
(L)
L,L =

[
Î − ĝL,Lt̂L−1ĥ

(L−1)
L−1,L−1t̂L−1

]−1

ĝL,L. (10)

The local Green’s functions of the system of L stacked
layers are obtained through

ĥ
(L)
i,i = ĥ

(L−1)
i,i + ĥ

(L−1)
i,L−1 t̂L−1ĥ

(L)
L,Lt̂L−1ĥ

(L−1)
L−1,i , (11)

where ĥ
(L)
i,L and ĥ

(L)
L,i are calculated recursively through

the relations ĥ
(L)
L,i = ĥ

(L)
L,Lt̂L−1ĥ

(L−1)
L−1,i and ĥ

(L)
i,L =

ĥ
(L−1)
i,L−1 t̂L−1ĥ

(L)
L,L. The computation time required to obtain

ĥ
(L)
L,L is proportional to L whereas it is proportional to L2

if one wants to calculate all the ĥ(L)
i,i .

3.2 Green’s functions of the connected trilayer

We note Ĝ the Green’s functions of the connected F/S/F
trilayer (see Fig. 2). Layers a and α are connected by a

tunnel amplitude ta,α = tα,a and layers b and β are con-
nected by a tunnel amplitude tb,β = tβ,b. We use the nota-
tion t = ta,α = tb,β and denote by t0 the tunnel amplitude
within each layer (see Eqs. (3, 4)).

The definition of the tunnel Hamiltonian that we use
for the F/S/F trilayer is slightly different from the con-
ventional definition given by (4):

WFSF =
t√
2

∑
x,σ

(
c+x,y,α,σcx,y,a,σ + c+x,y,a,σcx,y,α,σ

)

+
t√
2

∑
x,σ

(
c+x,y,β,σcx,y,b,σ + c+x,y,b,σcx,y,β,σ

)
. (12)

With the factors
√

2 the F/S/F trilayer with LS/a0 = 1
in the parallel alignment is equivalent to the F/S bilayer
with LS/a0 = 1 and a tunnel amplitude equal to t. The
correspondence between the bi and trilayer is useful for
checking the numerical simulations. For LS/a0 ≥ 2 we
carry out the simulations of the F/S/F trilayer but we note
that in the parallel alignment the qualitative predictions
are valid also for F/S bilayers as long as the thickness of
the superconductor is smaller than the coherence length.

We note K̂α,α = ĥα,αt̂α,aĥa,at̂a,α, K̂β,β =
ĥβ,β t̂β,bĥb,bt̂b,β , K̂α,β = ĥα,β t̂β,bĥb,bt̂b,β , K̂β,α =
ĥβ,αt̂α,aĥa,at̂a,α. The Green’s function Ĝα,α is given by

Ĝα,α =
[
Î − K̂α,α − K̂α,β

[
Î − K̂β,β

]−1

K̂β,α

]−1

×
[
ĥα,α + K̂α,β

[
Î − K̂β,β

]−1

ĥβ,α

]
, (13)

and Ĝβ,α is given by

Ĝβ,α =
[
Î − K̂β,β

]−1 [
ĥβ,α + K̂β,αĜα,α

]
. (14)

The Green’s function Ĝα,β is deduced from Ĝβ,α through
the relation Ĝτ1,τ2

α,β = Ĝτ2,τ1
β,α , where τ1 and τ2 are the

Nambu indexes. Ĝβ,β is given by

Ĝβ,β =
[
Î − K̂β,β

]−1 [
ĥβ,β + K̂β,αĜα,β

]
. (15)

We deduce the values of Ĝa,a, Ĝb,b, Ĝa,b and Ĝb,a as well
as Gi,i in the superconductor:

Ĝi,i = ĥi,i + ĥi,αt̂α,aĜa,at̂a,αĥα,i + ĥi,αt̂α,aĜa,b t̂b,βĥβ,i

+ ĥi,β t̂β,bĜb,a t̂a,αĥα,i + ĥi,β t̂β,bĜb,bt̂b,β ĥβ,i. (16)

To obtain the pair amplitude in the ferromagnets and su-
perconductor we first calculate recursively the ĥ’s and
next evaluate Ĝ1,2. The evaluation of the self-consistent
superconducting gap is done either by dichotomy if
LS/a0 = 1, 2 or by iterations of the self-consistency equa-
tion (9) if LS/a0 ≥ 3.
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4 F/S/F trilayers with LS, LF � ξ
(⊥)
S , ξ

(⊥)
F

In this section we consider the regime LS, LF � ξ
(⊥)
S , ξ

(⊥)
F ,

establish a connection between the LDOS and the self-
consistent superconducting gap, and show that the regime
hex/∆0 ∼ 1 is characterized by Andreev bound states
competing with the formation of a minigap.

4.1 Self-consistent superconducting gap for weak
ferromagnets in the parallel alignment

4.1.1 Role of the thicknesses of the electrodes

We have shown in Figure 3 the temperature dependence of
the superconducting gap for values of (LS , LF ) such that
LS , LF � ξ

(⊥)
S , ξ

(⊥)
F . We used LS/a0 = 1 in Figure 3 but

similar results were obtained with LS/a0 = 2. As expected
from Appendix A the breakdown of superconductivity in
the resonant F/S/F trilayer in the parallel alignment re-
sembles the case (LS/a0, LF/a0) = (1, 1) [40]: as tempera-
ture is reduced the superconducting gap increases, reaches
a maximum and decreases to zero. We obtain a reentrant
behavior in a narrow range of interface transparencies (not
shown in Fig. 3). By contrast we obtain a monotonic be-
havior for off-resonant values of (LS/a0, LF /a0), as ex-
pected from Appendix A.

The values of the tunnel amplitude needed to destroy
superconductivity for off-resonant trilayers (see Figs. 3b
and d) is almost ten times larger than in the resonant
case (see Figs. 3a and c). This is because the effective
coupling between the superconductor and ferromagnets is
much weaker in the off-resonant case due to the differences
in the density of states.

4.1.2 Role of the exchange field

We repeated the simulations for the F/S/F trilayer with
(LS/a0, LF /a0) = (2, 2) but with different values of
hex/∆0. For the smallest value of hex/∆0 (hex/∆0 = 0.28)
we obtained a monotonic decrease of the superconduct-
ing gap as a function of temperature for all values of the
tunnel amplitude. For hex/∆0 = 0.56, 0.83, 1.11, 1.39 we
obtained a non monotonic temperature dependence of the
superconducting gap similar to Figures 3a and 3b. The
non monotonic variation of the superconducting gap oc-
curs typically for hex being a fraction of ∆0 up to values
slightly above ∆0.

4.2 Relation between the local density of states
and the self-consistent superconducting gap

4.2.1 Local density of states in the parallel alignment

The spin-up LDOS ρ↑(ω) in the superconductor is shown
in Figure 4 for the F/S/F trilayer in the parallel alignment,
for (LS/a0, LF /a0) = (1, 3). We obtained similar results
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Fig. 3. Temperature dependence of the self-consistent super-
conducting gap for the F/S/F trilayer in the parallel align-
ment with (LS/a0, LF /a0) = (1, 1) (a), (1, 2) (b), (1, 3) (c),
(1, 4) (d), with weak ferromagnets (hex/∆0 = 0.83). LF and

LS are small compared to ξ
(⊥)
S,0 = 2t0a0/π∆0 = 17.7a0, ξ

(⊥)
F =

2t0a0/πhex = 21.2a0 and λF = 6.28a0. We use ∆0/εF = 0.014
and t0/εF = 0.4.
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Fig. 4. Energy dependence of the spin-up LDOS (in arbi-
trary units) in the superconducting layer of the F/S/F tri-
layer in the parallel alignment with (LS/a0, LF /a0) = (1, 3).
The superconducting gap, equal to ∆0, is not self-consistent.

(a) and (b) correspond to hex/∆0 = 0, ξ
(⊥)
F = ∞ (N/S inter-

face). (c) and (d) correspond to hex/∆0 = 0.83, ξ
(⊥)
F = 21.2a0

(F/S interface with weak ferromagnets). (e) and (f) corre-

spond to hex/∆0 = 13.9, ξ
(⊥)
F = 1.3a0 (F/S interface with

strong ferromagnets). We use ∆0/εF = 0.014. t0/εF = 0.4,
η/∆0 = 8.3 × 10−3, λF = 6.28a0.

for (LS/a0, LF/a0) = (2, 2). The spin-down LDOS ρ↓(ω)
is obtained through the relation ρ↓(ω) = ρ↑(−ω). The zero
temperature superconducting gap ∆ is fixed to the BCS
value ∆0 of an isolated superconducting layer.

The case of a N/S interface is shown in Figures 4a
and 4b. The LDOS is symmetric with respect to a change
of sign in energy, as expected in the absence of an



254 The European Physical Journal B

exchange field. There exists a minigap at the Fermi en-
ergy so that superconductivity is robust against increasing
the tunnel amplitude t. Increasing t gives rise to pairs of
Andreev bound states at opposite energies (see Fig. 4a).
Each peak corresponds to a miniband, which is visible in
Figure 4b obtained with larger values of t. The formation
of the minibands is related to the infinite planar geometry:
the layers are infinite in the x and y directions (see Fig. 1)
and there is thus a degeneracy associated to the position
of the Andreev bound state in the (x, y) plane. The bound
state can delocalize in the (x, y) plane and thus acquire a
dispersion which would not occur if the dimensions H and
D (see Fig. 1) were small compared to the BCS coherence
length, a situation considered in reference [28].

For weak ferromagnets with t, hex and ∆ having the
same order of magnitude (panel (c) in Fig. 4) we obtain
one Andreev bound state miniband inside the gap and
one resonant scattering state above the gap. The Andreev
bound state miniband moves to the Fermi energy as the
tunnel amplitude t increases (see Fig. 4c) and appears at
a positive energy for larger values of t (see Fig. 4d).

For larger values of the exchange field the Andreev
bound state miniband disappears from the LDOS. For
hex/∆0 	 1 the induced exchange field is opposite to the
magnetization in the ferromagnets [35,36].

There are thus two qualitatively different depairing
mechanisms for strong and weak ferromagnets. For strong
ferromagnets with hex/∆0 	 1 (see Figs. 4e and 4f) the
breakdown of superconductivity is due mainly to Zeeman
splitting. The case of very weak ferromagnets (hex/∆0 �
1) resembles that case hex/∆0 = 0: non perturbative An-
dreev bound states are generated in the superconduct-
ing gap approximately at opposite energies. In the case
hex/∆0 ∼ 1 the Andreev bound state miniband can be at
zero energy, therefore destructing the minigap.

4.2.2 Finite temperature local density of states

The spin-up LDOS at a finite temperature T is related the
conductance of a scanning tunneling microscope (STM)
in which the tip is made of a half-metal ferromagnet. The
finite temperature current at an arbitrary voltage is ob-
tained through Keldysh formalism. The finite temperature
LDOS is found to be

ρT (ω) =
∫
dω′ ρ(ω′)

4T cosh2
(

ω′−ω
2T

) , (17)

where ρ(ω) is equal to the zero temperature LDOS.
We calculated the finite temperature LDOS of the

(LS/a0, LF /a0) = (1, 3) trilayer in the parallel alignment
(see Fig. 5). Increasing temperature tends to reduce the
intensity of the Andreev bound state at the Fermi energy
in Figure 4c so that the LDOS at the Fermi energy de-
creases if T increases. For relatively large values of T the
peak structure has almost disappeared from the LDOS but
there remains a minimum associated to the superconduct-
ing gap that is significantly filled. As T increases there is
thus a first cross-over where the peak at the Fermi energy
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Fig. 5. Energy dependence of the finite temperature
spin-up LDOS (in arbitrary units) in the superconducting
layer of the F/S/F trilayer in the parallel alignment with
(LS/a0, LF /a0) = (1, 3). The zero temperature LDOS corre-
sponds to Figure 4c with t/∆0 = 1.4.

disappears and a superconducting minigap is restored, and
a second cross-over where the superconducting gap disap-
pears. The first cross over occurs at a temperature equal to
the bandwidth of the Andreev bound state miniband and
the second cross-over occurs at a temperature comparable
to the zero temperature superconducting gap. The finite
temperature LDOS is thus in a qualitative agreement with
the non monotonic self-consistent superconducting gap.

Reentrance obtained in a narrow range of interface
transparencies [40] can also be explained by this quali-
tative picture: if the Andreev bound state miniband is
narrow and located at a slightly positive energy like in
Figure 4c then the LDOS at the Fermi energy is vanish-
ingly small at T = 0 since the Fermi energy is not in
the Andreev bound state miniband. By increasing T the
width of the Andreev bound state miniband increases so
that the density of states at the Fermi energy increases. By
further increasing T the intensity of the Andreev bound
state miniband is reduced, and the density of states at
the Fermi energy decreases. This behavior is compatible
with a reentrant behavior of the self-consistent supercon-
ducting gap. The correlation between the low temperature
superconducting gap and the LDOS at the Fermi energy
is further established in Section 6.

4.2.3 Local density of states in the parallel alignment

The spin-up LDOS in the antiparallel alignment is shown
in Figure 6. The LDOS is symmetric with respect to a
change of sign of energy, but not equivalent to the LDOS
of a N/S interface (see Figs. 4a and 4b). There exists a
well-defined minimum at the Fermi energy corresponding
to the superconducting minigap. The energy dependence
of the LDOS in the antiparallel alignment shows that su-
perconductivity is stronger than in the parallel alignment,
both for weak and strong ferromagnets. This is expected
because of the exchange field induced in the superconduc-
tor in the antiparallel alignment is reduced compared to
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Fig. 6. Energy dependence of the spin-up LDOS (in arbitrary
units) in the superconducting layer of the F/S/F trilayer in
the antiparallel alignment with (LS/a0, LF /a0) = (1, 3). The
superconducting gap, equal to ∆0, is not self-consistent. (a)

and (b) correspond to hex/∆0 = 0.83, ξ
(⊥)
F = 21.1a0 (weak

ferromagnets). (c) corresponds to hex/∆0 = 2.78, ξ
(⊥)
F = 6.4a0

(strong ferromagnets). We used ∆0/εF = 0.014, t0/εF = 0.4,
η/∆0 = 8.3 × 10−3 and λF = 6.28a0.

the parallel alignment [31]. The self-consistent supercon-
ducting gap has a monotonic temperature dependence in
this case which is because a well-defined minigap is ob-
tained in the LDOS.

4.3 Role of disorder for weak ferromagnets
and for the F/S/F trilayer with atomic thickness

Disorder plays an important role in the proximity effect.
Diffusive N/S interfaces are described by quasiclassical
theory [54]. A small disorder can be incorporated in our
description based on microscopic Green’s functions like
in reference [53] (see Appendix B). The strength of dis-
order in the superconductor is characterized by δ

(0)
S =√

nαu2
α/∆0, where nα is the concentration of impurities

and uα is the scattering potential, and we use a similar
parameter δ(0)F to characterize disorder in the ferromag-
nets. We obtain a significant effect of disorder for relatively
large values of δ(0)S and δ(0)F .

4.3.1 Disorder in the superconducting and ferromagnetic
layers

The temperature dependence of the self-consistent super-
conducting gap in the presence of disorder in the super-
conductor is shown in Figure 7 for (LS/a0, LF /a0) = (1, 1)
in the parallel alignment. In the absence of disorder Fig-
ure 7 corresponds to Figure 3a. The effect of disorder is
to reduce the effect of the tunnel amplitude [40] so that if
disorder increases a larger value of t is needed to destroy
superconductivity. Comparing Figures 3 and 7 we see that
the variations of ∆(T ) are affected by a weak disorder es-
pecially if the F/S/F trilayer in the parallel alignment is
close to the breakdown of superconductivity. In this case
the dimensionless parameter controlling the strength of
disorder is δS = δ

(0)
S ∆0/∆(T ) which can be much larger

than δ(0)S .
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Fig. 7. Temperature dependence of the self-consistent super-
conducting gap of the F/S/F trilayer in the parallel alignment
with (LS/a0, LF /a0) = (1, 1) in the presence of disorder in
the superconducting layer. Without vertex corrections we use

hex/∆0 = 0.83, δ
(0)
S = 6.2 (a), δ

(0)
S = 7.6 (b), δ

(0)
S = 9.8 (c). (d)

corresponds to δ
(0)
S = 9.8 with vertex corrections. In all cases

we use δ
(0)
F = 0.

4.3.2 Vertex corrections

There exist two perturbative series: one in the hopping
amplitude t and the other in the disorder scattering po-
tential u. Vertex corrections arise from diagrams that mix
the two series (see Appendix B2). The temperature depen-
dence of the self-consistent superconducting gap with the
vertex corrections is shown in Figure 7d. The critical tem-
perature is larger if vertex corrections are included. We
obtain a non monotonic temperature dependence of the
superconducting gap even in the presence of vertex correc-
tions. The role of vertex corrections increases if t increases
since the vertex correction term is proportional to nαt

2u2
α.

5 Finite thickness in the superconductor

(LS � ξ
(⊥)
S and LF � ξ

(⊥)
F )

In this section we include a finite thickness in the super-
conductor for LF � ξ

(⊥)
F . For weak ferromagnets in the

regime hex/∆0 ∼ 1 we obtain non monotonic temperature
dependences of the self-consistent superconducting gap in
the parallel alignment, therefore confirming Section 4.

We have shown in Figure 8a the variation of the self-
consistent superconducting gap in the middle of the su-
perconductor as a function of the reduced exchange field
hex/∆0. As expected from the variation of the critical tem-
perature [38,47,48] we obtain a minimum if the exchange
field is comparable to the superconducting gap. Moreover
we obtain a minimum also in the antiparallel alignment
that is related to the minigap formed in between An-
dreev bound states at opposite energies (see Sect. 4.2.3).
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Fig. 8. (a) Variation of the self-consistent superconducting
gap calculated at T/∆0 = 0.14 in the parallel (P) alignment
(open symbols) and in the antiparallel (AP) alignment (filled
symbols) as a function of hex/∆0. (b) Variation of the self-
consistent superconducting gap calculated with hex/∆0 = 0.56
in the parallel alignment, as a function of T/∆0. We used in
both cases (LF /a0, LS/a0) = (11, 11). The Fermi wave length
is λF = 6.28a0. We use t/∆0 = 5.6 (� in the P alignment and
� in the AP alignment), t/∆0 = 8.3 (◦ in the P alignment
and • in the AP alignment), and t/∆0 = 11.1 (� in the P
alignment and � in the AP alignment).

The full temperature dependence of the self-consistent su-
perconducting gap in the parallel alignment is shown in
Figure 8b for LS/a0 = 11 (comparable to ξ

(⊥)
S /a0). We

obtain a maximum in the variation of ∆(T )/∆0 in the
parallel alignment. We carried out the same simulation in
the antiparallel alignment and found a monotonic temper-
ature dependence of the self-consistent superconducting
gap (not shown in Fig. 8).

6 Finite thickness in the ferromagnets

(LS � ξ
(⊥)
S and LF � ξ

(⊥)
F )

We discuss now the regime LS � ξ
(⊥)
S and LF � ξ

(⊥)
F .

We find Andreev bound states at the Fermi energy in
the parallel alignment for strong ferromagnets, correlated
with non monotonic temperature dependences of the self-
consistent superconducting gap.

The regime LF � ξF is characterized by oscillations of
the self-consistent superconducting gap, critical temper-
ature and pair amplitude as a function of LF . We ob-
tain bound states within the superconducting gap and
resonant scattering states outside the superconducting
gap. We calculated systematically the LDOS and the self-
consistent superconducting gap for LS/a0 = 1, 2 and
LF /a0 = 1, ..., 100, in the parallel and antiparallel align-
ments (see Fig. 9). The systematic calculation of the finite
temperature LDOS given by equation (17) is too demand-
ing from a computational point of view. Instead we cal-
culate the LDOS at zero temperature with η = T . The
consistency between the two calculations was verified in
a few cases. Depending on the interface transparencies
∆(LF /a0)/∆0 tends either to a finite value or to zero
in the limit LF /a0 → +∞. We concentrate on the first
case only. For 1 ≤ LF /a0 ≤ 40 we see in Figure 9 that
on average the superconducting gap is smaller when the
LDOS at the Fermi energy is larger. For LS/a0 = 1 and
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Fig. 9. Correlation between ∆/∆0 and the LDOS at the Fermi
energy (in arbitrary units) for LS/a0 = 1 and LF /a0 between
1 and 40. The temperature is T/∆0 = 0.14. In the calculation
of the LDOS the superconducting gap is not self-consistent.

We use strong ferromagnets with hex/∆0 = 13.9 and ξ
(⊥)
F =

1.3a0. We use LS/a0 = 1 and t/∆0 = 2.1 (a); LS/a0 = 1 and
t/∆0 = 2.8 (b); LS/a0 = 2 and t/∆0 = 3.5 (c); LS/a0 = 2
and t/∆0 = 4.2 (d); LS/a0 = 1 and t/∆0 = 2.8 (e); LS/a0 = 1
and t/∆0 = 3.3 (f). (a), (b), (c), (d) correspond to the parallel
alignment. (e) and (f) correspond to the antiparallel alignment.
The solid line in (b) corresponds to ρ(ω = 0) = 0.045 (see text).

t/∆0 = 2.8 (see Fig. 9b) we obtain ∆(T )/∆0 = 0 for four
values of LF /a0 (LF /a0 = 4, 6, 11, 13). For three other
values of LF/a0 (LF /a0 = 16, 23, 25) we obtain a non
monotonic variation of ∆(T )/∆0. For two other values of
LF/a0 (LF /a0 = 32 and LF /a0 = 35) ∆(T )/∆0 is mono-
tonic but far from the BCS variation. These nine values
of LF /a0 with an anomalous temperature dependence of
the self-consistent superconducting gap have large values
of the LDOS at the Fermi energy (ρ(ω = 0) > 0.045 in
Figure 9b, in arbitrary units). Like in Section 4.2.1 An-
dreev bound states near the Fermi energy correlate with
unconventional temperature dependences of the supercon-
ducting gap.

For 40 ≤ LF /a0 ≤ 100 corresponding to LF 	 ξ
(⊥)
F ,

we obtain a cloud of points with a small dispersion and
with no correlation between the superconducting gap and
the LDOS at the Fermi energy. This corresponds to the
cross-over to the F/S/F trilayer with bulk ferromagnets.

We obtain bound states within the superconducting
gap and unconventional temperature dependences of the
superconducting gap with strong ferromagnets in the par-
allel alignment. By contrast with strong ferromagnets we
obtain a conventional temperature dependence of the su-
perconducting gap for the F/S/F trilayer with smaller val-
ues of (LS/a0, LF /a0) [40].

We carried out the same simulation in the antiparallel
alignment and found that ∆(T )/∆0 is close to the BCS
temperature dependence of the superconducting gap for
all values of LS/a0 between 1 and 100. A larger density of
states at the Fermi energy correlates with smaller values of
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the self-consistent superconducting gap like in the parallel
alignment (see Figs. 9e and f). Because of the minigap
that can be formed since the bound states are at opposite
energies (see Fig. 6) we do not obtain the points with
large values of the density of states at the Fermi energy
like in the parallel alignment. The absence of large values
of the LDOS at the Fermi energy is related to the fact
that the Andreev levels in the antiparallel alignment do
not cross the Fermi energy as the interface transparency
is increased.

7 Comparison with other models

The discussion in the preceding sections was restricted
to the infinite planar geometry. Now we discuss Andreev
bound states in other geometries without imposing self-
consistency on the superconducting gap. In Section 7.1 we
improve the discussion of a model proposed by recently Ve-
cino et al. [28] in which a ferromagnetic chain is connected
to a superconductor [55]. In Section 7.2 we compare the
LDOS to a model discussed recently by Cserti et al. [29].

7.1 A one dimensional model

We suppose that the superconductor and ferromagnets are
described by 1D chains with open boundary conditions
with LS/a0 sites in the superconductor and LF /a0 sites
in the ferromagnet. We denote by tS (tF ) the hopping am-
plitude in the superconductor (ferromagnet) and we use
tS = tF . The energy level spacing in the superconductor
is much smaller than the superconducting gap ∆.

We have shown in Figure 10 the evolution of the en-
ergy of Andreev bound states as a function of the length of
the ferromagnetic chain obtained with the algorithm pre-
sented in Appendix C. The spectrum is symmetric under
a change of sign in energy if we keep all energy levels into
account. Andreev bound states arising from the gap edges
move to the Fermi energy as LF /a0 increases [28]. There
is level repulsion between Andreev bound state and oscil-
lations of the energy levels with a period of order 10 times
ξF = 2tFa0/πhex. These oscillations do not exist in ref-
erence [28]. Among all Andreev bound states obtained at
a fixed LF /a0 some have a spectral weight much larger
than the other. We keep only the levels having a spectral
weight larger than a given cut-off. The evolution of the re-
maining Andreev bound states as a function of LF /a0 is
then in agreement with reference [28].

In connection with the discussion in Section 4.2.1 we
see that Andreev bound states near the Fermi energy oc-
cur only if the ferromagnetic chain is long enough, larger
than approximately 10 times ξS = 2tSa0/π∆. This should
be contrasted with the LDOS in the infinite planar limit
discussed in Section 4.2.1, and with the model discussed
in Section 7.2.
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Fig. 10. Reduced energy E/∆ of the Andreev bound states as
a function of the number of sites LF /a0 in the ferromagnetic
chain for weak ferromagnets (hex/∆ = 0.5). We used the pa-
rameters ∆/t = ∆0/tF = 0.01, t/tS = 0.01, LS = 105a0. The
entire spectrum is kept in (a). Only the levels with a residue
larger than 2 are kept in (b). The superconducting gap is not
self-consistent.
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Fig. 11. Density of Andreev bound states (in arbitrary units)
ρ(E/∆) as a function of reduced energy E/∆ for Z = 1000 and
Z = 200 (a); Z = 40 and Z = 8 (b). We used the parameters
∆/εF = 0.02, ∆ = 0.01, hex/∆ = 0.5, d = λF /2, W � 15900λF

where λF = 2π/kF is the Fermi wave length.

7.2 Bogoliubov-de Gennes equations

We consider now the model proposed by Cserti et al. [29]
in which a 2D ferromagnetic dot with a rectangular shape
of dimensions (d,W ) is connected to a superconductor (see
Fig. 1b). The superconductor has a width W but is infi-
nite in the other direction (d′ = +∞ in Fig. 1). Using
the solution of this model [29] based on Bogoliubov-de
Gennes equations we generated the set {En} of Andreev
bound state energies. Like for the de Gennes-Saint James
model [26] the density of bound states is not equal to the
LDOS in the superconductor [28]. The evolution of the
density of Andreev bound states as a function of the in-
terface transparency is shown in Figure 11. The interface
transparency is parametrized by the dimensionless coeffi-
cient Z, equal to the repulsive interface potential in units
of the Fermi energy [56]. For large values of Z (correspond-
ing to tunnel interfaces) we obtain an Andreev bound state
miniband around E/∆0 = hex/∆0. As the interface trans-
parency decreases the miniband broadens and splits into
two separate minibands (see Fig. 11). This is in a quali-
tative agreement with Section 4.2.1 (see Figs. 4c and 4d)
where we obtain also Andreev bound state minibands that
evolve inside the superconducting gap and can generate a
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large density of states at the Fermi energy for some values
of the interface transparencies.

8 Conclusions

We have presented a detailed analysis of F/S/F trilay-
ers with weak ferromagnets based on microscopic Green’s
functions. The exchange field induced in the superconduc-
tor in the regime hex/∆0 	 1 generates Zeeman splitting
of the LDOS while the regime hex/∆0 � 1 is characterized
by Andreev bound states. In the non perturbative regime
t/∆0 ∼ hex/∆0 ∼ 1 the Andreev bound state miniband
crosses the Fermi energy as the interface transparency
is increased therefore competing with the formation of a
minigap, which explains why the self-consistent supercon-
ducting gap is weakened by the formation of an Andreev
bound state miniband near the Fermi energy. Increasing
temperature decreases the intensity of the Andreev bound
state peak in the LDOS which correlates with a reduc-
tion of the low temperature self-consistent superconduct-
ing gap.

We found non monotonic temperature dependences
of the superconducting gap with weak ferromagnets for
LF , LS � ξ

(⊥)
F , ξ

(⊥)
S as well as for LS ∼ ξ

(⊥)
S and LF �

ξ
(⊥)
F . In the regime LS � ξ

(⊥)
S and LF � ξ

(⊥)
F we obtain

non monotonic temperature dependences for some values
of LF /a0 for strong ferromagnets.

For the F/S/F trilayer in the parallel alignment we
find pairs of Andreev bound states at opposite energies but
there exists a minigap so that the self-consistent supercon-
ducting gap decreases monotonically with temperature.
However at a fixed temperature the self-consistent super-
conducting gap is non monotonic as a function of the ex-
change field which is due to pairs of Andreev bound states
at opposite energies in the regime hex/∆0 ∼ 1 � t/∆0.

Concerning the induced exchange field in the F/S/F
trilayer in the parallel alignment we find that for weak
ferromagnets the exchange field is in the same direction
as in the ferromagnetic electrodes whereas it is in the op-
posite direction for strong ferromagnets.

The author wishes to thank D. Feinberg for fruitful discussions
and useful comments on the manuscript.

Appendix A: Resonances in lateral
confinement

In this appendix we account for the differences between
the resonant and off-resonant F/S/F trilayers. The wave
function in the lateral direction within a given electrode
is described by the tight binding Hamiltonian

H = t0
∑

z

[|z + 1〉〈z|+ |z〉〈z + 1|] , (A.1)

where t0 is the hopping between neighboring layers, and
z/a0 is an integer between 0 to L/a0 − 1. The eigenstates
with open boundary conditions are given by

|ψn〉 =
√

2a0

L+ a0

L/a0−1∑
z=0

sin
(
nπ

z + a0

L+ a0

)
|z〉, (A.2)

and the energy is given by

εn(L) = 2t⊥ cos
(
nπa0

L+ a0

)
, (A.3)

with n = 1, ..., L/a0. Let us consider a F/S/F trilayer
with LF /a0 layers in the ferromagnets and LS/a0 layers
in the superconductor. Quasiparticles in the superconduc-
tor with a transverse quantum number nS can tunnel in
the ferromagnets only if there exists an energy level with
quantum number nF close to resonance in the ferromag-
nets, such that εnS(LS) � εnF (LF ). If tunneling between
the ferromagnets and superconductor is not resonant then
the F/S/F trilayer behaves as if the ferromagnets were in-
sulating. The lowest off-resonant values of (LS/a0, LF /a0)
correspond to (LS/a0, LF /a0) = (1, 2), (1, 4), (2, 1), (2, 3),
(3, 2), (3, 4), (4, 1), (4, 2), (4, 3). The lowest resonant values
of (LS/a0, LF /a0) correspond to (LS/a0, LF/a0) = (1, 1),
(1, 3), (2, 2), (3, 1), (3, 3).

Appendix B: Disorder in the F/S/F trilayer
with atomic thickness

In this appendix we give the Dyson equations of a F/S/F
trilayer in the presence of disorder.

B.1 Disorder in the superconducting
and ferromagnetic layers

We first neglect vertex corrections that are discussed in
Section 4.3.2. We replace the Green’s functions ĝα,α of
the superconducting layer by the Green’s function ĝ

(d)
α,α

of the superconducting layer in the presence of disorder.
To second order in disorder the Dyson equation takes the
form

ĝ(d)
α,α(k, ω) = ĝα,α(k, ω) + nαa

2
0ĝα,α(k, ω)

×
∫

dk′

(2π)2
ûα(k − k′)ĝα,α(k′, ω)ûα(k′ − k)ĝ(d)

α,α(k, ω),

(B.1)

where nα is the concentration of impurities and the over-
line denotes an averaging over disorder. Equation (B.1) is
solved according to
 g(d),1,1

α,α f
(d),1,2
α,α

f
(d),2,1
α,α g

(d),2,2
α,α


 =

1
D

{[
g1,1

α,α f
1,2
α,α

f2,1
α,α g

2,2
α,α

]

− d

[
Σ2,2

g Σf

Σf Σ1,1
g

]}
, (B.2)
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where d = g1,1
α,αg

2,2
α,α − (

f1,2
α,α

)2 and D = 1 + 2fα,αΣf −
g1,1

α,αΣ
1,1
g − g2,2

α,αΣ
2,2
g + dΣd, with Σd = Σ1,1

g Σ2,2
g − (Σf)2.

The self-energies due to disorder take the form[
Σ1,1

g Σ1,2
f

Σ1,2
f Σ2,2

g

]
=
nαu

2
αa

2
0

(2π)2

∫
dk

[
g1,1

α,α(k) f1,2
α,α(k)

f1,2
α,α(k) g2,2

α,α(k)

]
, (B.3)

where nα is the concentration of impurities and uα is the
scattering potential. We suppose that uα is independent
on wave vector.

The fully dressed Green’s function of the connected
trilayer without vertex corrections is obtained through

Ĝα,α =
[
Î − ĝ(d)

α,αt̂α,aĝ
(d)
a,at̂a,α − ĝ(d)

α,αt̂α,bĝ
(d)
b,b t̂b,α

]−1

ĝ(d)
α,α,

(B.4)
where Ĝα,α stands for Ĝα,α(k, ω), and ĝ

(d)
i,i stands for

ĝ
(d)
i,i (k, ω), with i = α, a, b.

B.2 Vertex corrections

Lowest order vertex corrections correspond to processes in
which a quasiparticle of the superconducting layer makes
an excursion in one of the ferromagnetic layers in between
two scatterings on a given impurity in the superconduct-
ing layer. The fully dressed Green’s function is obtained
through

Ĝα,α = ĝ(d)
α,α

+ ĝ(d)
α,αt̂α,aĝ

(d)
a,at̂a,αĜα,α + ĝ(d)

α,αt̂α,bĝ
(d)
b,b t̂b,αĜα,α

+ nαa
2
0ĝ

(d)
α,α

∫
dk′

(2π)2
ûαĝ

′(d)
α,α t̂α,aĝ

′(d)
a,a t̂a,αĝ

′(d)
α,αûαĜα,α

+ nαa
2
0ĝ

(d)
α,α

∫
dk′

(2π)2
ûαĝ

′(d)
α,α t̂α,bĝ

′(d)
b,b t̂b,αĝ

′(d)
α,αûαĜα,α,

(B.5)

where we used the same notation as for equation (B.4)
and g′(d)

i,i = g
(d)
i,i (k′, ω), ûα = ûα(k − k′).

Appendix C: Algorithm for the 1D model

In this appendix we detail the algorithm by which we cal-
culate the energies of the Andreev bound states of the
1D model [28]. In the superconductor the spectral repre-
sentation of the local propagator is obtained by summing
equation (6) over all energy levels of the 1D chain with
open boundary conditions:

g1,1
α,β(ω) =

2a0

LS + a0

LS/a0∑
n=1

sin
(
nπ

xα + a0

LS + a0

)

× sin
(
nπ

xβ + a0

LS + a0

) [
u2

n

ω − En − iη
+

v2
n

ω + En − iη

]
,

(C.1)

where α and β correspond to two sites in the 1D chain at
positions xα and xβ . Similar expressions are obtained for
the “22” and “12” components. In the ferromagnet the en-
ergy levels are given by ε(σ)

n = εn(LF )−σhex, where εn(L)
is given by equation (A.3). The local Green’s function at
the extremity of the 1D ferromagnet is given by

g(σ)
a,a(ω) =

2a0

LF + a0

LF∑
n=1

sin2

(
nπa0

LF + a0

)
1

ω − ε
(σ)
n − iη

.

(C.2)
We denote by α a site in the superconductor, cho-

sen far from the boundaries. At site α is connected the
extremity “a” of the ferromagnetic chain. We note t =
ta,α = tα,a. The fully dressed Green’s function G1,1

α,α of
spin-up electrons at site α is deduced from the Dyson
equations [28,36,37]. The spectral representation of G1,1

α,α

is obtained by evaluating numerically the position of the
individual energy levels ωn and their spectral weights Rn:
G1,1

α,α =
∑

nR
1,1
n /(ω − ωn − iη). In the limit η → 0 the

LDOS is given by

ρ1,1
α,α(ω) =

1
π

Im
[
G1,1

α,α(ω)
]

=
∑

n

R1,1
n δ(ω − ωn). (C.3)

The energy levels and spectral weights can be obtained
without approximation to an arbitrary precision by using
a dichotomy algorithm.

References

1. M. Tinkham, Introduction to superconductivity (McGraw-
Hill, 1996)

2. P. Tedrow, R. Meservey, Phys. Rev. Lett. 26, 192 (1971);
P. Tedrow, R. Meservey, Phys. Rev. B 7, 318 (1973); R.
Meservey, P. Tedrow, Phys. Rep. 238, 173 (1994)

3. R.J. Soulen et al., Science 282, 85 (1998)
4. S.K. Upadhyay, A. Palanisami, R.N. Louie, R.A.

Buhrman, Phys. Rev. Lett. 81, 3247 (1998)
5. M.J.M. de Jong, C.W. Beenakker, Phys. Rev. Lett. 74,

1657 (1995)

6. V.I. Fal’ko, C.J. Lambert, A.F. Volkov Pis’ma Zh. Éksp.
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Reich, C.L. Chien, Phys. Rev. B 54, 6119 (1996); C.L.
Chien, J.S. Jiang, J.Q. Xiao, D. Davidović, D.H. Reich, J.
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37. R. Mélin, J. Phys.: Condens. Matter 13, 6445 (2001); V.
Apinyan, R. Mélin, Eur. Phys. J. B 25, 373 (2002)

38. I. Baladié, A. Buzdin, Phys. Rev. B 67, 014523 (2003);
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